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RESEARCH QUESTION
The Semantic Web helps in changing

plain information into Linked Data, which
contain implicit knowledge that can be lever-
aged using a reasoner. Reasoning is a com-
plex process, and current solutions aim at
reasoning at the scale of the Web of Data.
We so need more powerful reasoners, scal-
able enough to make inference over very
large datasets. Distributing and paralleliz-
ing this process over a cluster seems the
most adapted solution. Cloud Computing
appears like an interesting environment for
large scale inferencing. The research ques-
tion is therefore to propose a Cloud-ready
Linked Data reasoner, whose architecture
makes it possible to reason over a large scale
corpus in a distributed way.

STATE OF THE ART

• WebPie [8]
– Uses MapReduce [1] to reason over RDFS and OWL Horst [7].

– Each rule execution is distributed.

– WebPie suffer from issues due to MapReduce [4], despite of some upgrades [9].

• MapResolve [5]
– Highlights MapReduce main problems.

– Proposes another solution over more expressing fragments, still using MapReduce.

– Doesn’t provide significant improvements over WebPie performances.

• Parallel inferencing for OWL knowledge bases [6]
– Proposes two ways for reasoning partitioning: rules splitting or data splitting.

– The rules are splitted thanks to a rule-dependency graph partitioning.

– Three methods for data partitioning: graph, hash and domain-specific partitioning.

– Data are still in hermetic cores, which generates loops and duplicates.

PROPOSED APPROACH

Shared Memory

• Process memory shared by all the cores
• Each core uses the entire dataset during

the process
• Cores access new triples as soon as they

are inferenced
• Aims of avoiding duplicates and unnec-

essary loops, and speed up computa-
tion

Stream inferencing

• Use a input stream for reasoning
• Reason over new data as soon as they

arrive
• Aims to avoid overhead bottle necks

Axioms sorting

• Reason over OWL-Full is computation-
ally expensive (undecidable).

• Reasoners use less expressive frag-
ments, but more computable.

• There are some defined fragments, like
OWL Horst [7] and ρDF [3], with a good
complexity/expressivity trade-off.

• We will define a parametric fragment,
that can be adapted to the wanted com-
plexity/expressivity trade-off.

• Concepts will be sorted thanks to their
complexity and their rank in the figure
on the right.
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Rank of most used concepts usable in inference, with fragments
highlighting (data from [2])

FUTURE WORK

1. Deploy WebPie and reproduce results

2. Propose and implement our stream
reasoner

3. Compete against WebPie results

SCHEDULE

• May 2013 - State of the art internal re-
port.

• October 2013 - WebPie deployment
and tests.

• February 2014 - Proposal of our Cloud-
hosted Linked Data reasoner.

• May 2014 - First implementation of our
reasoner.

• November 2014 - ’Stable’ version de-
ployed on our private Cloud.

• January 2015 - Evaluation campaign
and interpretation of results.

• April 2015 - Writing the PhD thesis.
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