
A Linked Data Reasoner in the Cloud

Jules Chevalier
jules.chevalier@univ-st-etienne.fr

LT2C, Télécom Saint Etienne, Université Jean Monnet

December 2014

Supervisors :
Frédérique Laforest
Christophe Gravier
Julien Subercaze

mailto:jules.chevalier@univ-st-etienne.fr


Education

I 2010-2012 : Master Degree "Web Intelligence", UJM
I Feb-Jul 2012 : Research Internship "Knowledge in the Cloud", LT2C
I 2012-2015 : PhD Thesis "Distributed Reasoning", LT2C

2 / 43



Research Intership

I Skill improvement in Semantic Web and Inference Process
I State of the art
I Outline of proposition
I Implementation tests

Supervisors : Christophe Gravier
Julien Subercaze

3 / 43



OpenCloudware aims at building an
open software engineering platform,
for the collaborative development of

distributed applications to be
deployed on multiple Cloud

infrastructures.

source: http://www.opencloudware.org

4 / 43



Thesis : Distributed Reasoning
I From 1st October 2012 to October 2015
I Continuation of the state of the art
I Improving the proposition
I Beginning of the implementation

Feb Mar Apr Jun AugMay OctJul NovSep Dec Jan Feb Mar Apr Jun AugMay OctJul NovSep Dec Jan

Web Semantic

Sota
1st

Outline

Distribution
Parallelization

1st
Version

Ground Truth
Stream

Teaching

ImplementationTests

2nd
Version

2012 2013Doc 1 Doc 2Internship

Teaching

Skills improvements

State of the Art

Proposition

Development

Supervisors : Frédérique Laforest
Christophe Gravier
Julien Subercaze

5 / 43



Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

6 / 43



Semantic Web & Description Logic

I Formalises concepts to represent them
I Standardizes this representation
I Makes it readable for both humans and computers
I Link these data together
I Allows automatic operations on these data

I Integrity constraint validation
I Explicit implicit data from the base
I Query the knowledge base

7 / 43



Semantic Web & Description Logic

I Formalises concepts to represent them
I Standardizes this representation
I Makes it readable for both humans and computers
I Link these data together
I Allows automatic operations on these data

I Integrity constraint validation
I Explicit implicit data from the base
I Query the knowledge base

8 / 43



Problematic

Problematic
I Reasoning process scaling to Big Data (NP complete for most

complex ontologies)

Idea
I Distribute the inference process among several nodes
I Use the Cloud as runtime environment

I Flexibility: Adapt the number/power of nodes to the needs
I Cost limitation: We pay what we use
I Low latency between nodes in the Cloud

9 / 43



Problematic

Problematic
I Reasoning process scaling to Big Data (NP complete for most

complex ontologies)

Idea
I Distribute the inference process among several nodes
I Use the Cloud as runtime environment

I Flexibility: Adapt the number/power of nodes to the needs
I Cost limitation: We pay what we use
I Low latency between nodes in the Cloud

9 / 43



Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

10 / 43



Logic Description [6]

I Representation of data
I Understandable by both humans and machines
I Formal
I Universal

I Interpretations
I Open World Assumption : Everything exists until something

says it’s not
I Close World Assumption : The world is limited by the

definitions

11 / 43



Fragments
I A fragment is a list of axioms
I Semantic Web standards suggest different pre defined

fragments (RDFS, OWL Lite, OWL Full, OWL DL, ...)
I The more they have a high expressivity, the more the

operations are complex (from P to NEXPTIME)
I Choosing one fragment is trade off between expressivity and

computational complexity

Example:
I domain
I range
I subClassOf
I subPropertyOf
I type

source: http://www.ontotext.com/rdfs-rules-owl

12 / 43



Ontology example : TBox and TBox
TBox : Definitions
Man ≡ Human u Male A Man is a Male Human
Woman ≡ Human u ¬Male A Woman is a non Male Human
Parent ≡ ∃hasChild.> A parent has at least one Child
Father ≡ Parent u Man A Father is a Man Parent
Mother ≡ Parent u Woman A Mother is a Woman Parent

ABox : Individuals
Man Bob, John, Jack,

Peter, Alfred

Woman Olivia, Astrid,
Amelia, Alice, Martha

hasChild (Bob,Olivia),
(Amelia,Olivia),
(John,Alice),
(John,Peter),
(Martha,Alice),
(Martha,Guillaune),
(Olivia,Jack),
(Peter,Jack)

Jack

Olivia Peter Alice

Bob Amelia John Martha

13 / 43



Knowledge processing

I The logic description allows several operations on the
Knowledge Base [5, 1] :

I Consistency checking
I Satisfiability checking
I Querying
I Classification
I Reasoning/Inference
I ...

14 / 43



Inference rules

ρdf [7] rules (type, subClassOf, subPropertyOf, domain, range)

CAX-SCO c1 rdfs:subClassOf c2 x rdf:type c2
x rdf:type c1

PRP-DOM p rdfs:domain c x rdf:type c
x p y

PRP-RNG p rdfs:range c y rdf:type c
x p y

SCM-SCO c1 rdfs:subClassOf c2 c1 rdfs:subClassOf c3
c2 rdfs:subClassOf c3

SCM-EQC2 c1 rdfs:subClassOf c2 c1 owl:equivalentClass c2
c2 rdfs:subClassOf c1

SCM-DOM1 p rdfs:domain c1 p rdfs:domain c2
c1 rdfs:subClassOf c2

SCM-RNG1 p rdfs:range c1 p rdfs:range c2
c1 rdfs:subClassOf c2

PRP-SPO1 p1 rdfs:subPropertyOf p2 x p2 y
x p1 y

SCM-SPO p1 rdfs:subPropertyOf p2 p1 rdfs:subPropertyOf p3
p2 rdfs:subPropertyOf p3

SCM-DOM2 p2 rdfs:domain c p1 rdfs:domain c
p1 rdfs:subPropertyOf p2

SCM-RNG2 p2 rdfs:range c p1 rdfs:range c
p1 rdfs:subPropertyOf p2

SCM-EQP2 p1 rdfs:subPropertyOf p2 p1 owl:equivalentProperty p2
p2 rdfs:subPropertyOf p1

15 / 43



Reasoning : Forward Chaining VS Backward Chaining

Abraham

Homer Marge

Liza Bart

I What we know :
I Abraham father Homer
I Homer father Liza
I Homer father Bart
I Marge mother Liza
I Marge mother bart

I What Forward Chaining do :
I Abraham grandfather Liza
I Abraham grandfather Bart
I ...
I Abraham grandfather Liza ? → yes

I What Backward Chaining do :
I Abraham grandfather Liza ?
I Abraham father X & X father Liza ?
I Abraham father Homer &

Homer father Liza → yes

16 / 43



Reasoning : Forward Chaining VS Backward Chaining

Abraham

Homer Marge

Liza Bart

I What we know :
I Abraham father Homer
I Homer father Liza
I Homer father Bart
I Marge mother Liza
I Marge mother bart

I What Forward Chaining do :
I Abraham grandfather Liza
I Abraham grandfather Bart
I ...
I Abraham grandfather Liza ? → yes

I What Backward Chaining do :
I Abraham grandfather Liza ?
I Abraham father X & X father Liza ?
I Abraham father Homer &

Homer father Liza → yes

16 / 43



Reasoning : Forward Chaining VS Backward Chaining

Abraham

Homer Marge

Liza Bart

I What we know :
I Abraham father Homer
I Homer father Liza
I Homer father Bart
I Marge mother Liza
I Marge mother bart

I What Forward Chaining do :
I Abraham grandfather Liza
I Abraham grandfather Bart
I ...
I Abraham grandfather Liza ? → yes

I What Backward Chaining do :
I Abraham grandfather Liza ?
I Abraham father X & X father Liza ?
I Abraham father Homer &

Homer father Liza → yes
16 / 43



Our problematic

What we want to do
I Forward chaining for fast query answers
I Fragment agnostic
I Customizable rule-based inference
I Constraints bounded inference (time/number of triples)

What are the problems
I Rules form a cyclic graph

I Complexity depends on the
fragment !

I The amount of triples generated is
quite unpredictable

I The complexity also depends on
data !

Outlines to resolve them
I Distribute the process
I Optimise the rules

schedule
I Help the user choosing

wisely the fragment

17 / 43



Our problematic

What we want to do
I Forward chaining for fast query answers
I Fragment agnostic
I Customizable rule-based inference
I Constraints bounded inference (time/number of triples)

What are the problems
I Rules form a cyclic graph

I Complexity depends on the
fragment !

I The amount of triples generated is
quite unpredictable

I The complexity also depends on
data !

Outlines to resolve them
I Distribute the process
I Optimise the rules

schedule
I Help the user choosing

wisely the fragment

17 / 43



Our problematic

What we want to do
I Forward chaining for fast query answers
I Fragment agnostic
I Customizable rule-based inference
I Constraints bounded inference (time/number of triples)

What are the problems
I Rules form a cyclic graph

I Complexity depends on the
fragment !

I The amount of triples generated is
quite unpredictable

I The complexity also depends on
data !

Outlines to resolve them
I Distribute the process
I Optimise the rules

schedule
I Help the user choosing

wisely the fragment

17 / 43



Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

18 / 43



Introduction - MapReduce [3]

source: blog.jteam.nl/2009/08/04/introduction-to-hadoop
19 / 43



MapReduce approaches
WebPie : a Web-scale Parallel Inference Engine

I 2009 - Jacopo Urbani Thesis [11]
I Uses MapReduce for OWL Horst and RDFS reasoning

I 2011 - Fix some issues to improve OWL Horst reasoning [12]
I Duplicates limitation
I Indexation for sameAs
I Greedy scheduling
I Cleaner Job after some rules, or at the end

MapResolve [9]

I Based their work on WebPie to develop a OWL Horst reasoner
I Use 3 sets for triples : usable, used, inferred
I Limit the amount of data processed at the same time
I Points out MapReduce limitations

20 / 43



Parallel Inferencing for OWL Knowledge Bases [10]

I Proposes two ways to distribute the process

Split the data
I By graph partition
I By hash
I By domain expert knowledges

Split the rules
I By graph partition

I Gives a distributed algorithm using a external reasoner

21 / 43



Analysis : MapReduce approaches

MapReduce
Framework

I Allows to implement distributed
tasks

I The Hadoop framework
I Best suited to batch process huge

amounts of data

I MapReduce requires an acyclic
dataflow

I Jobs run in isolation
I Not suitable network shuffling
I Hadoop distributed file system

WebPie and MapResolve
Contributions

I Despite optimisations,
performances are low

I Nodes must wait for each other
I Generates a lot of duplicates
I Fragment dependant
I Naive partitioning

I Critical letter for WebPie [8]

22 / 43



Analysis : Parallel Inferencing for OWL Knowledge Bases

I Proposes smart partitioning
I Integrates an existing

reasoner
I Fragment agnostic

I Data are still in hermetic
cores

I No shared data
I Nodes must wait to receive

the new generated triples

23 / 43



Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

24 / 43



Main lines

I Avoid data isolation with triples flow
I Data structures for distributed reasoning
I Fragment/source agnostic
I Smart adaptive scheduling
I Three reasoning options : Full, Max-Bounded, Faster

25 / 43



General Outline

Fragment
rdfs:domain
rdfs:range
rdfs:subClassOf
rdfs:subPropertyOf
rdf:type

Rule Graph
Generator

Direct cyclic graph 
of rules dependencies

Local
DataBase

Web Data

Triples

Data Stream

Distributed
Reasoner
In memory
...

FULL:
Complete Inference
Maximum Time

MAX-BOUNDED:
Incomplete Inference
Fixed Time

FASTER:
Maximum Infered Triples
in a Minimum Time 

26 / 43



Avoid batch process with flow management

I MapReduce is not well suited for inference because of data isolation
I We manage triples flow to :

I Adapt the node network
I Avoid data isolation
I Prevent nodes awaiting

I Calls for stream processing of triples
I Batch v Stream
I But Stream 6v Batch ! (Especially Max-Bounded and Faster problems)

As of today
I Reasoner input can be batched or streamed
I Rules are flow based
I Multiple instances of rules can run at the same time

27 / 43



Avoid batch process with flow management

I MapReduce is not well suited for inference because of data isolation
I We manage triples flow to :

I Adapt the node network
I Avoid data isolation
I Prevent nodes awaiting

I Calls for stream processing of triples
I Batch v Stream
I But Stream 6v Batch ! (Especially Max-Bounded and Faster problems)

As of today
I Reasoner input can be batched or streamed
I Rules are flow based
I Multiple instances of rules can run at the same time

27 / 43



Data structures for distributed reasoning

Numbers Everyone Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns

Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns

Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

source: Software Engineering Advice from Building Large-Scale Distributed Systems, Jeff Dean
28 / 43



Data structures for distributed reasoning

Numbers Everyone Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns

Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns

Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

source: Software Engineering Advice from Building Large-Scale Distributed Systems, Jeff Dean
29 / 43



Data structures for distributed reasoning

Semantic Web is not Big Data
I RAM faster than disk
I HDFS was conceived for PetaBytes processing
I Does large datasets fit in RAM ?

I Billion Triples Challenge 2012 Dataset : 1.4 Billion triples
I 3 long per triples : 192 bits
I 1.4 Billion triples fits in 33GB of RAM
I After inference : 27 Billion triples
I Fits in 1TB (cost ≤ 10,000$)

30 / 43



Data structures for distributed reasoning

Semantic Web is not Big Data
I RAM faster than disk
I HDFS was conceived for PetaBytes processing
I Does large datasets fit in RAM ?
I Billion Triples Challenge 2012 Dataset : 1.4 Billion triples
I 3 long per triples : 192 bits

I 1.4 Billion triples fits in 33GB of RAM
I After inference : 27 Billion triples
I Fits in 1TB (cost ≤ 10,000$)

30 / 43



Data structures for distributed reasoning

Semantic Web is not Big Data
I RAM faster than disk
I HDFS was conceived for PetaBytes processing
I Does large datasets fit in RAM ?
I Billion Triples Challenge 2012 Dataset : 1.4 Billion triples
I 3 long per triples : 192 bits
I 1.4 Billion triples fits in 33GB of RAM

I After inference : 27 Billion triples
I Fits in 1TB (cost ≤ 10,000$)

30 / 43



Data structures for distributed reasoning

Semantic Web is not Big Data
I RAM faster than disk
I HDFS was conceived for PetaBytes processing
I Does large datasets fit in RAM ?
I Billion Triples Challenge 2012 Dataset : 1.4 Billion triples
I 3 long per triples : 192 bits
I 1.4 Billion triples fits in 33GB of RAM
I After inference : 27 Billion triples
I Fits in 1TB (cost ≤ 10,000$)

30 / 43



Data structures for distributed reasoning
I We need efficient distributed structures with :

I Concurrent structures
I Indexed structures for fast retrieving
I In memory storage for faster access

I With support for :
I Network exchange
I Shared data
I Minimum disk access (loading only)

As of today
I TripleStore object shared by threads

I Concurrent
I Indexed
I Immutable triples

I Every running rule can access it
I Direct access limits duplicates

31 / 43



Fragment agnostic

I Custom fragment or rule set
I The user can also define new

custom rules
I Individual rules optimisations
I Proposes fragment optimisations

As of today
I Any rule is a distinct class
I Dynamic schedule
I Can easily add new rules

Rank of most used concepts usable in inference, with fragments
highlighting (data from [4])

32 / 43



Smart adaptive scheduling

I Automatically schedules the rules
thanks to the dependence rules
graph

I The schedule depends on the
fragment and so on the set of rules

I Just-in-time scheduling

As of today
I Schedules the rules at the

beginning
I Only take into account the

specified rules

33 / 43



Multithreaded version

I Before implement distributed version, we start by a
Multithreaded one, and then upgrade to distributed
architecture.

34 / 43



Outline evolution

First reasoner outline

TRIPLE
DISTRIBUTOR

Buffers Switchers

R1

R2

R3

Rn

THREAD POOL
R1 R3 R2 R2 R1 R3 R1 R2

Rule
Thread
Creator

SHARED IN-MEMORY
SHARED TRIPLE STORE BLOOM FILTER

FILTER FOR
USABLE
TRIPLES

35 / 43



Outline evolution

Rule streamed evolution

Buffer Distributor

Run

Executor Service

S
u
b

sc
ri

b
e
rs

36 / 43



Outline evolution

Actual reasoner outline

Local
DataBase

Web Data

Data Stream

1

2

34

5

37 / 43



What’s new

I There is not one node dedicated to one task
I New thread pre allocated, dormant
I Automatic rules scheduling
I Shared data in memory
I Streaming process

38 / 43



Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

39 / 43



Publications

ESWC 2013
Accepted paper A Linked Data Reasoner in the Cloud [2]
Poster presentation at the PhD Symposium

RR 2013
Summer School participation
Poster presentation at the PhD Symposium

40 / 43



Schedule

I End of 2013 - First streamed version
- WebPie deployment and tests - Our baseline

I February 2014 - Proposal of our Cloud-hosted linked data reasoner
- Extended analysis of 1st version vs baseline

I May 2014 - First implementation with smart scheduling
- Extended analysis of smart version vs 1st version

I November 2014 - Reasoner open-sourced with documentation
- Tests launched for 3 addressed problems

I January 2015 - Additional features :
- Help the user choosing a fragment
- Propose fragment optimisations
- Make predictions about the inference (time and space)
- Make optimisation on the reasoner itself

I April 2015 - Writing the PhD thesis

41 / 43



Bibliography I
[1] Baader, F.

Tableau algorithms for description logics.
Automated Reasoning with Analytic Tableaux and (2000), 1–18.

[2] Chevalier, J.
A Linked Data Reasoner in the Cloud.
The Semantic Web: Semantics and Big Data 7882 (2013), 722–726.

[3] Dean, J., and Ghemawat, S.
MapReduce: Simplified data processing on large clusters.
Communications of the ACM 51, 1 (2008), 107–113.

[4] Glimm, B., Hogan, A., Krötzsch, M., and Polleres, A.
OWL: Yet to arrive on the Web of Data?
LDOW (2012).

[5] Krötzsch, M., Rudolph, S., and Hitzler, P.
Description logic rules.
2010.

[6] Mendelson, E.
Introduction to mathematical logic.
Syntax (2007).

[7] Muñoz, S., Pérez, J., and Gutierrez, C.
Minimal deductive systems for RDF.
The Semantic Web: Research and Applications 4519 (2007), 53–67.

[8] Patel-Schneider, P.
Letter: Comments on WebPIE: A Web-scale parallel inference engine using MapReduce.
Web Semantics: Science, Services and Agents on . . . 15 (Sept. 2012), 69–70.

42 / 43



Bibliography II

[9] Schlicht, A., and Stuckenschmidt, H.
Mapresolve.
Web Reasoning and Rule Systems 6902 (2011), 294–299.

[10] Soma, R., and Prasanna, V.
Parallel Inferencing for OWL Knowledge Bases.
2008 37th International Conference on Parallel Processing (Sept. 2008), 75–82.

[11] Urbani, J.
RDFS/OWL reasoning using the MapReduce framework.
PhD thesis, Vrije Universiteit - Faculty of Sciences, 2009.

[12] Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., and Bal, H. E.
WebPIE: A Web-scale parallel inference engine using MapReduce.
J. Web Sem. 10 (2012), 59–75.

43 / 43


	Introduction
	Theoretical Context
	State of the Art
	Proposed Approach
	Publications and Schedule

