A Linked Data Reasoner in the Cloud

Jules Chevalier jules.chevalier@univ-st-etienne.fr

LT2C, Télécom Saint Etienne, Université Jean Monnet

December 2014

Supervisors : Frédérique Laforest Christophe Gravier Julien Subercaze

Education

- 2010-2012 : Master Degree "Web Intelligence", UJM
- ► Feb-Jul 2012 : Research Internship "Knowledge in the Cloud", LT2C
- 2012-2015 : PhD Thesis "Distributed Reasoning", LT2C

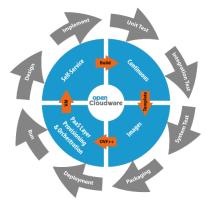
Research Intership

- Skill improvement in Semantic Web and Inference Process
- State of the art
- Outline of proposition
- Implementation tests

Supervisors : Christophe Gravier Julien Subercaze

open Cloudware

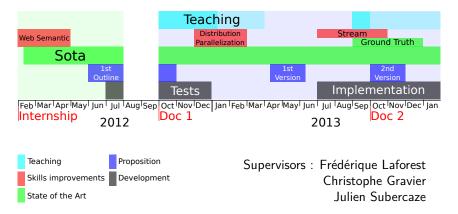
OpenCloudware aims at building an open software engineering platform, for the collaborative development of distributed applications to be deployed on multiple Cloud infrastructures.



source: http://www.opencloudware.org

Thesis : Distributed Reasoning

- From 1st October 2012 to October 2015
- Continuation of the state of the art
- Improving the proposition
- Beginning of the implementation



Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

Semantic Web & Description Logic

- Formalises concepts to represent them
- Standardizes this representation
- Makes it readable for both humans and computers
- Link these data together
- Allows automatic operations on these data
 - Integrity constraint validation
 - Explicit implicit data from the base
 - Query the knowledge base

Semantic Web & Description Logic

- Formalises concepts to represent them
- Standardizes this representation
- Makes it readable for both humans and computers
- Link these data together
- Allows automatic operations on these data
 - Integrity constraint validation
 - Explicit implicit data from the base
 - Query the knowledge base

Problematic

Problematic

 Reasoning process scaling to Big Data (NP complete for most complex ontologies)

Problematic

Problematic

 Reasoning process scaling to Big Data (NP complete for most complex ontologies)

Idea

- Distribute the inference process among several nodes
- Use the Cloud as runtime environment
 - Flexibility: Adapt the number/power of nodes to the needs
 - Cost limitation: We pay what we use
 - Low latency between nodes in the Cloud

Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

Logic Description [6]

Representation of data

- Understandable by both humans and machines
- Formal
- Universal
- Interpretations
 - Open World Assumption : Everything exists until something says it's not
 - Close World Assumption : The world is limited by the definitions

Fragments

- A fragment is a list of axioms
- Semantic Web standards suggest different pre defined fragments (RDFS, OWL Lite, OWL Full, OWL DL, ...)
- The more they have a high expressivity, the more the operations are complex (from P to NEXPTIME)
- Choosing one fragment is trade off between expressivity and computational complexity

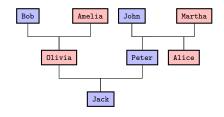
Ontology example : TBox and TBox

TBox : Definitions

- $\begin{array}{l} \mathsf{Man} \equiv \mathsf{Human} \sqcap \mathsf{Male} \\ \mathsf{Woman} \equiv \mathsf{Human} \sqcap \neg \mathsf{Male} \\ \mathsf{Parent} \equiv \exists \mathsf{hasChild}.\top \\ \mathsf{Father} \equiv \mathsf{Parent} \sqcap \mathsf{Man} \\ \mathsf{Mother} \equiv \mathsf{Parent} \sqcap \mathsf{Woman} \end{array}$
- A Man is a Male Human
- A Woman is a non Male Human
- A parent has at least one Child
- A Father is a Man Parent
- A Mother is a Woman Parent

ABox : Individuals

- Man Bob, John, Jack, Peter, Alfred
- Woman Olivia, Astrid, Amelia, Alice, Martha
- hasChild (Bob,Olivia), (Amelia,Olivia), (John,Alice), (John,Peter), (Martha,Alice), (Martha,Guillaune), (Olivia,Jack), (Peter,Jack)



Knowledge processing

- The logic description allows several operations on the Knowledge Base [5, 1]:
 - Consistency checking
 - Satisfiability checking
 - Querying
 - Classification
 - Reasoning/Inference

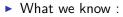
▶ ...

Inference rules

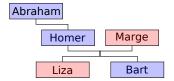
 ρdf [7] rules (type, subClassOf, subPropertyOf, domain, range)

CAX-SCO	c_1 rdfs:subClassOf c_2	x rdf:type c ₂
	x rdf:type c ₁	
PRP-DOM	p rdfs:domain c	x rdf:type c
	хру	
PRP-RNG	p rdfs:range c	y rdf:type c
	хру	
SCM-SCO	c1 rdfs:subClassOf c2	c1 rdfs:subClassOf c3
	c ₂ rdfs:subClassOf c ₃	
SCM-EQC2	c1 rdfs:subClassOf c2	c1 owl:equivalentClass c2
	c ₂ rdfs:subClassOf c ₁	
SCM-DOM1	p rdfs:domain c ₁	p rdfs:domain c ₂
	c1 rdfs:subClassOf c2	
SCM-RNG1	p rdfs:range c1	p rdfs:range c2
	c_1 rdfs:subClassOf c_2	
PRP-SPO1	p_1 rdfs:subPropertyOf p_2	х р ₂ у
	х р ₁ у	
SCM-SPO	p_1 rdfs:subPropertyOf p_2	p_1 rdfs:subPropertyOf p_3
	p2 rdfs:subPropertyOf p3	
SCM-DOM2	p ₂ rdfs:domain c	p1 rdfs:domain c
	p_1 rdfs:subPropertyOf $p2$	
SCM-RNG2	p ₂ rdfs:range c	p1 rdfs:range c
	p_1 rdfs:subPropertyOf p_2	
SCM-EQP2	p_1 rdfs:subPropertyOf p_2	p_1 owl:equivalentProperty p_2
	p_2 rdfs:subPropertyOf p_1	

Reasoning : Forward Chaining VS Backward Chaining

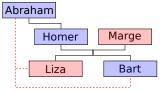


- Abraham father Homer
- Homer father Liza
- Homer father Bart
- Marge mother Liza
- Marge mother bart



Reasoning : Forward Chaining VS Backward Chaining

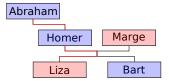
- What we know :
 - Abraham father Homer
 - Homer father Liza
 - Homer father Bart
 - Marge mother Liza
 - Marge mother bart



- What Forward Chaining do :
 - Abraham grandfather Liza
 - Abraham grandfather Bart
 - **۰**...
 - Abraham grandfather Liza ? \rightarrow yes

Reasoning : Forward Chaining VS Backward Chaining

- What we know :
 - Abraham father Homer
 - Homer father Liza
 - Homer father Bart
 - Marge mother Liza
 - Marge mother bart



- What Forward Chaining do :
 - Abraham grandfather Liza
 - Abraham grandfather Bart
 - **۰**...
 - Abraham grandfather Liza ? ightarrow yes

What Backward Chaining do :

- Abraham grandfather Liza ?
- Abraham father X & X father Liza ?
- ► Abraham father Homer & Homer father Liza → yes

Our problematic

What we want to do

- Forward chaining for fast query answers
- Fragment agnostic
- Customizable rule-based inference
- Constraints bounded inference (time/number of triples)

Our problematic

What we want to do

- Forward chaining for fast query answers
- Fragment agnostic
- Customizable rule-based inference
- Constraints bounded inference (time/number of triples)

What are the problems

- Rules form a cyclic graph
 - Complexity depends on the fragment !
- The amount of triples generated is quite unpredictable
 - The complexity also depends on data !

Our problematic

What we want to do

- Forward chaining for fast query answers
- Fragment agnostic
- Customizable rule-based inference
- Constraints bounded inference (time/number of triples)

What are the problems

- Rules form a cyclic graph
 - Complexity depends on the fragment !
- The amount of triples generated is quite unpredictable
 - The complexity also depends on data !

Outlines to resolve them

- Distribute the process
- Optimise the rules schedule
- Help the user choosing wisely the fragment

Summary

Introduction

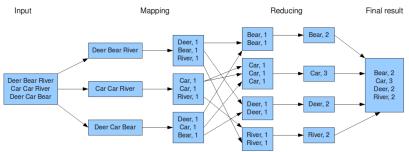
Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

Introduction - MapReduce [3]



The overall MapReduce word count process

source: blog.jteam.nl/2009/08/04/introduction-to-hadoop

MapReduce approaches

WebPie : a Web-scale Parallel Inference Engine

- 2009 Jacopo Urbani Thesis [11]
 - Uses MapReduce for OWL Horst and RDFS reasoning
- ▶ 2011 Fix some issues to improve OWL Horst reasoning [12]
 - Duplicates limitation
 - Indexation for sameAs
 - Greedy scheduling
 - Cleaner Job after some rules, or at the end

MapResolve [9]

- Based their work on WebPie to develop a OWL Horst reasoner
- ▶ Use 3 sets for triples : usable, used, inferred
- Limit the amount of data processed at the same time
- Points out MapReduce limitations

Parallel Inferencing for OWL Knowledge Bases [10]

Proposes two ways to distribute the process

Split the data

- By graph partition
- By hash
- By domain expert knowledges

Split the rules

- By graph partition
- Gives a distributed algorithm using a external reasoner

Analysis : MapReduce approaches

MapReduce Framework

- Allows to implement distributed tasks
- The Hadoop framework
- Best suited to batch process huge amounts of data

- MapReduce requires an acyclic dataflow
- Jobs run in isolation
- Not suitable network shuffling
- Hadoop distributed file system

WebPie and MapResolve Contributions

- Despite optimisations, performances are low
- Nodes must wait for each other
- Generates a lot of duplicates
- Fragment dependant
- Naive partitioning
- Critical letter for WebPie [8]

Analysis : Parallel Inferencing for OWL Knowledge Bases

- Proposes smart partitioning
- Integrates an existing reasoner
- Fragment agnostic

- Data are still in hermetic cores
- No shared data
- Nodes must wait to receive the new generated triples

Summary

Introduction

Theoretical Context

State of the Art

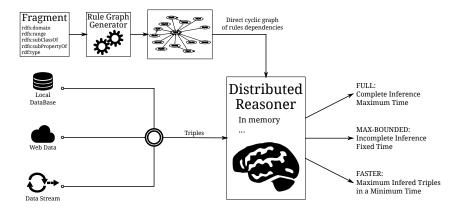
Proposed Approach

Publications and Schedule

Main lines

- Avoid data isolation with triples flow
- Data structures for distributed reasoning
- Fragment/source agnostic
- Smart adaptive scheduling
- Three reasoning options : Full, Max-Bounded, Faster

General Outline



Avoid batch process with flow management

- MapReduce is not well suited for inference because of data isolation
- We manage triples flow to :
 - Adapt the node network
 - Avoid data isolation
 - Prevent nodes awaiting
- Calls for stream processing of triples
 - Batch
 Stream

Avoid batch process with flow management

- MapReduce is not well suited for inference because of data isolation
- We manage triples flow to :
 - Adapt the node network
 - Avoid data isolation
 - Prevent nodes awaiting
- Calls for stream processing of triples
 - Batch
 Stream
 - ▶ But Stream \blacksquare Batch ! (Especially Max-Bounded and Faster problems)

As of today

- Reasoner input can be batched or streamed
- Rules are flow based
- Multiple instances of rules can run at the same time

Data structures for distributed reasoning

Numbers Everyone Should Know

0.5 ns
5 ns
7 ns
100 ns
100 ns
10,000 ns
20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
10,000,000 ns
30,000,000 ns
150,000,000 ns

source: Software Engineering Advice from Building Large-Scale Distributed Systems, Jeff Dean

Data structures for distributed reasoning

Numbers Everyone Should Know

L1 cache reference	0.5 ns
Branch mispredict	5 ns
L2 cache reference	7 ns
Mutex lock/unlock	100 ns
Main memory reference	100 ns
Compress 1K bytes with Zippy	10,000 ns
Send 2K bytes over 1 Gbps network	20,000 ns
Read 1 MB sequentially from memory	250,000 ns
Round trip within same datacenter	500,000 ns
Disk seek	10,000,000 ns
Read 1 MB sequentially from network	10,000,000 ns
Read 1 MB sequentially from disk	30,000,000 ns
Send packet CA->Netherlands->CA	150,000,000 ns

source: Software Engineering Advice from Building Large-Scale Distributed Systems, Jeff Dean

Data structures for distributed reasoning

Semantic Web is not Big Data

- RAM faster than disk
- HDFS was conceived for PetaBytes processing
- Does large datasets fit in RAM ?

Semantic Web is not Big Data

- RAM faster than disk
- HDFS was conceived for PetaBytes processing
- Does large datasets fit in RAM ?
- ▶ Billion Triples Challenge 2012 Dataset : 1.4 Billion triples
- ▶ 3 long per triples : 192 bits

Semantic Web is not Big Data

- RAM faster than disk
- HDFS was conceived for PetaBytes processing
- Does large datasets fit in RAM ?
- Billion Triples Challenge 2012 Dataset : 1.4 Billion triples
- ▶ 3 long per triples : 192 bits
- 1.4 Billion triples fits in 33GB of RAM

Semantic Web is not Big Data

- RAM faster than disk
- HDFS was conceived for PetaBytes processing
- Does large datasets fit in RAM ?
- ▶ Billion Triples Challenge 2012 Dataset : 1.4 Billion triples
- ▶ 3 long per triples : 192 bits
- ▶ 1.4 Billion triples fits in 33GB of RAM
- After inference : 27 Billion triples
- ▶ Fits in 1TB (cost ≤ 10,000\$)

- We need efficient distributed structures with :
 - Concurrent structures
 - Indexed structures for fast retrieving
 - In memory storage for faster access
- ► With support for :
 - Network exchange
 - Shared data
 - Minimum disk access (loading only)

As of today

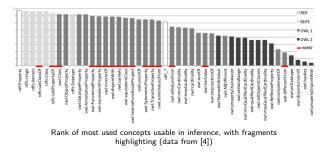
- TripleStore object shared by threads
 - Concurrent
 - Indexed
 - Immutable triples
- Every running rule can access it
- Direct access limits duplicates

Fragment agnostic

- Custom fragment or rule set
- The user can also define new custom rules
- Individual rules optimisations
- Proposes fragment optimisations

As of today

- Any rule is a distinct class
- Dynamic schedule
- Can easily add new rules



Smart adaptive scheduling

- Automatically schedules the rules thanks to the dependence rules graph
- The schedule depends on the fragment and so on the set of rules
- Just-in-time scheduling

As of today

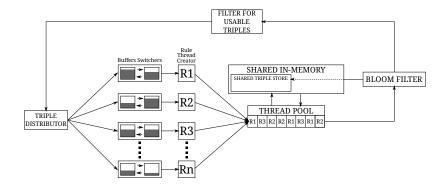
- Schedules the rules at the beginning
- Only take into account the specified rules

Multithreaded version

 Before implement distributed version, we start by a Multithreaded one, and then upgrade to distributed architecture.

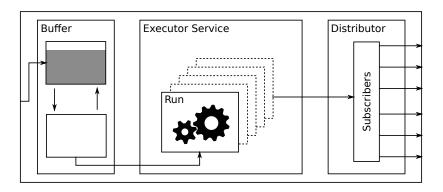
Outline evolution

FIRST REASONER OUTLINE



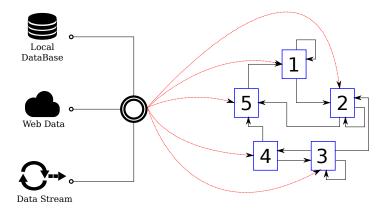
Outline evolution

RULE STREAMED EVOLUTION



Outline evolution

ACTUAL REASONER OUTLINE



What's new

- There is not one node dedicated to one task
- New thread pre allocated, dormant
- Automatic rules scheduling
- Shared data in memory
- Streaming process

Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

Publications

ESWC 2013 Accepted paper A Linked Data Reasoner in the Cloud [2] Poster presentation at the PhD Symposium

RR 2013 Summer School participation Poster presentation at the PhD Symposium

Schedule

- End of 2013 First streamed version
 - WebPie deployment and tests Our baseline
- February 2014 Proposal of our Cloud-hosted linked data reasoner
 Extended analysis of 1st version vs baseline
- May 2014 First implementation with smart scheduling
 Extended analysis of smart version vs 1st version
- November 2014 Reasoner open-sourced with documentation
 Tests launched for 3 addressed problems
- January 2015 Additional features :
 - Help the user choosing a fragment
 - Propose fragment optimisations
 - Make predictions about the inference (time and space)
 - Make optimisation on the reasoner itself
- April 2015 Writing the PhD thesis

Bibliography I

[1] BAADER, F.

Tableau algorithms for description logics. Automated Reasoning with Analytic Tableaux and (2000), 1–18.

- [2] CHEVALIER, J.
 A Linked Data Reasoner in the Cloud. The Semantic Web: Semantics and Big Data 7882 (2013), 722–726.
- [3] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data processing on large clusters. Communications of the ACM 51, 1 (2008), 107–113.
- [4] GLIMM, B., HOGAN, A., KRÖTZSCH, M., AND POLLERES, A. OWL: Yet to arrive on the Web of Data? LDOW (2012).
- [5] KRÖTZSCH, M., RUDOLPH, S., AND HITZLER, P. Description logic rules. 2010.
- [6] MENDELSON, E. Introduction to mathematical logic. Syntax (2007).
- [7] MUÑOZ, S., PÉREZ, J., AND GUTIERREZ, C. Minimal deductive systems for RDF. The Semantic Web: Research and Applications 4519 (2007), 53–67.
- [8] PATEL-SCHNEIDER, P. Letter: Comments on WebPIE: A Web-scale parallel inference engine using MapReduce. Web Semantics: Science, Services and Agents on ... 15 (Sept. 2012), 69–70.

Bibliography II

- SCHLICHT, A., AND STUCKENSCHMIDT, H. Mapresolve. Web Reasoning and Rule Systems 6902 (2011), 294–299.
- [10] SOMA, R., AND PRASANNA, V. Parallel Inferencing for OWL Knowledge Bases. 2008 37th International Conference on Parallel Processing (Sept. 2008), 75–82.
- [11] URBANI, J. RDFS/OWL reasoning using the MapReduce framework. PhD thesis, Vrije Universiteit - Faculty of Sciences, 2009.
- [12] URBANI, J., KOTOULAS, S., MAASSEN, J., VAN HARMELEN, F., AND BAL, H. E. WebPIE: A Web-scale parallel inference engine using MapReduce. J. Web Sem. 10 (2012), 59–75.