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Education

I 2010-2012 : Master Degree "Web Intelligence", UJM
I Feb-Jul 2012 : Research Internship "Knowledge in the Cloud", LT2C
I 2012-2015 : PhD Thesis "Distributed Reasoning", LT2C
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Research Intership

I Skill improvement in Semantic Web and Inference Process
I State of the art
I Outline of proposition
I Implementation tests

Supervisors : Christophe Gravier
Julien Subercaze
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OpenCloudware aims at building an
open software engineering platform,
for the collaborative development of

distributed applications to be
deployed on multiple Cloud

infrastructures.

source: http://www.opencloudware.org
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Thesis : Distributed Reasoning
I From 1st October 2012 to October 2015
I Continuation of the state of the art
I Improving the proposition
I Beginning of the implementation
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Semantic Web & Description Logic

I Formalises concepts to represent them
I Standardizes this representation
I Makes it readable for both humans and computers
I Link these data together
I Allows automatic operations on these data

I Integrity constraint validation
I Explicit implicit data from the base
I Query the knowledge base
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Problematic

Problematic
I Reasoning process scaling to Big Data (NP complete for most

complex ontologies)

Idea
I Distribute the inference process among several nodes
I Use the Cloud as runtime environment

I Flexibility: Adapt the number/power of nodes to the needs
I Cost limitation: We pay what we use
I Low latency between nodes in the Cloud
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Logic Description [6]

I Representation of data
I Understandable by both humans and machines
I Formal
I Universal

I Interpretations
I Open World Assumption : Everything exists until something

says it’s not
I Close World Assumption : The world is limited by the

definitions
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Fragments
I A fragment is a list of axioms
I Semantic Web standards suggest different pre defined

fragments (RDFS, OWL Lite, OWL Full, OWL DL, ...)
I The more they have a high expressivity, the more the

operations are complex (from P to NEXPTIME)
I Choosing one fragment is trade off between expressivity and

computational complexity

Example:
I domain
I range
I subClassOf
I subPropertyOf
I type

source: http://www.ontotext.com/rdfs-rules-owl
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Ontology example : TBox and TBox
TBox : Definitions
Man ≡ Human u Male A Man is a Male Human
Woman ≡ Human u ¬Male A Woman is a non Male Human
Parent ≡ ∃hasChild.> A parent has at least one Child
Father ≡ Parent u Man A Father is a Man Parent
Mother ≡ Parent u Woman A Mother is a Woman Parent

ABox : Individuals
Man Bob, John, Jack,

Peter, Alfred

Woman Olivia, Astrid,
Amelia, Alice, Martha

hasChild (Bob,Olivia),
(Amelia,Olivia),
(John,Alice),
(John,Peter),
(Martha,Alice),
(Martha,Guillaune),
(Olivia,Jack),
(Peter,Jack)

Jack

Olivia Peter Alice

Bob Amelia John Martha
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Knowledge processing

I The logic description allows several operations on the
Knowledge Base [5, 1] :

I Consistency checking
I Satisfiability checking
I Querying
I Classification
I Reasoning/Inference
I ...
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Inference rules

ρdf [7] rules (type, subClassOf, subPropertyOf, domain, range)

CAX-SCO c1 rdfs:subClassOf c2 x rdf:type c2
x rdf:type c1

PRP-DOM p rdfs:domain c x rdf:type c
x p y

PRP-RNG p rdfs:range c y rdf:type c
x p y

SCM-SCO c1 rdfs:subClassOf c2 c1 rdfs:subClassOf c3
c2 rdfs:subClassOf c3

SCM-EQC2 c1 rdfs:subClassOf c2 c1 owl:equivalentClass c2
c2 rdfs:subClassOf c1

SCM-DOM1 p rdfs:domain c1 p rdfs:domain c2
c1 rdfs:subClassOf c2

SCM-RNG1 p rdfs:range c1 p rdfs:range c2
c1 rdfs:subClassOf c2

PRP-SPO1 p1 rdfs:subPropertyOf p2 x p2 y
x p1 y

SCM-SPO p1 rdfs:subPropertyOf p2 p1 rdfs:subPropertyOf p3
p2 rdfs:subPropertyOf p3

SCM-DOM2 p2 rdfs:domain c p1 rdfs:domain c
p1 rdfs:subPropertyOf p2

SCM-RNG2 p2 rdfs:range c p1 rdfs:range c
p1 rdfs:subPropertyOf p2

SCM-EQP2 p1 rdfs:subPropertyOf p2 p1 owl:equivalentProperty p2
p2 rdfs:subPropertyOf p1
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Reasoning : Forward Chaining VS Backward Chaining

Abraham

Homer Marge

Liza Bart

I What we know :
I Abraham father Homer
I Homer father Liza
I Homer father Bart
I Marge mother Liza
I Marge mother bart

I What Forward Chaining do :
I Abraham grandfather Liza
I Abraham grandfather Bart
I ...
I Abraham grandfather Liza ? → yes

I What Backward Chaining do :
I Abraham grandfather Liza ?
I Abraham father X & X father Liza ?
I Abraham father Homer &

Homer father Liza → yes
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Our problematic

What we want to do
I Forward chaining for fast query answers
I Fragment agnostic
I Customizable rule-based inference
I Constraints bounded inference (time/number of triples)

What are the problems
I Rules form a cyclic graph

I Complexity depends on the
fragment !

I The amount of triples generated is
quite unpredictable

I The complexity also depends on
data !

Outlines to resolve them
I Distribute the process
I Optimise the rules

schedule
I Help the user choosing

wisely the fragment
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Introduction - MapReduce [3]

source: blog.jteam.nl/2009/08/04/introduction-to-hadoop
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MapReduce approaches
WebPie : a Web-scale Parallel Inference Engine

I 2009 - Jacopo Urbani Thesis [11]
I Uses MapReduce for OWL Horst and RDFS reasoning

I 2011 - Fix some issues to improve OWL Horst reasoning [12]
I Duplicates limitation
I Indexation for sameAs
I Greedy scheduling
I Cleaner Job after some rules, or at the end

MapResolve [9]

I Based their work on WebPie to develop a OWL Horst reasoner
I Use 3 sets for triples : usable, used, inferred
I Limit the amount of data processed at the same time
I Points out MapReduce limitations
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Parallel Inferencing for OWL Knowledge Bases [10]

I Proposes two ways to distribute the process

Split the data
I By graph partition
I By hash
I By domain expert knowledges

Split the rules
I By graph partition

I Gives a distributed algorithm using a external reasoner
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Analysis : MapReduce approaches

MapReduce
Framework

I Allows to implement distributed
tasks

I The Hadoop framework
I Best suited to batch process huge

amounts of data

I MapReduce requires an acyclic
dataflow

I Jobs run in isolation
I Not suitable network shuffling
I Hadoop distributed file system

WebPie and MapResolve
Contributions

I Despite optimisations,
performances are low

I Nodes must wait for each other
I Generates a lot of duplicates
I Fragment dependant
I Naive partitioning

I Critical letter for WebPie [8]
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Analysis : Parallel Inferencing for OWL Knowledge Bases

I Proposes smart partitioning
I Integrates an existing

reasoner
I Fragment agnostic

I Data are still in hermetic
cores

I No shared data
I Nodes must wait to receive

the new generated triples

23 / 43



Summary

Introduction

Theoretical Context

State of the Art

Proposed Approach

Publications and Schedule

24 / 43



Main lines

I Avoid data isolation with triples flow
I Data structures for distributed reasoning
I Fragment/source agnostic
I Smart adaptive scheduling
I Three reasoning options : Full, Max-Bounded, Faster
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General Outline

Fragment
rdfs:domain
rdfs:range
rdfs:subClassOf
rdfs:subPropertyOf
rdf:type

Rule Graph
Generator

Direct cyclic graph 
of rules dependencies

Local
DataBase

Web Data

Triples

Data Stream

Distributed
Reasoner
In memory
...

FULL:
Complete Inference
Maximum Time

MAX-BOUNDED:
Incomplete Inference
Fixed Time

FASTER:
Maximum Infered Triples
in a Minimum Time 
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Avoid batch process with flow management

I MapReduce is not well suited for inference because of data isolation
I We manage triples flow to :

I Adapt the node network
I Avoid data isolation
I Prevent nodes awaiting

I Calls for stream processing of triples
I Batch v Stream
I But Stream 6v Batch ! (Especially Max-Bounded and Faster problems)

As of today
I Reasoner input can be batched or streamed
I Rules are flow based
I Multiple instances of rules can run at the same time
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Data structures for distributed reasoning

Numbers Everyone Should Know

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns

Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns

Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA->Netherlands->CA 150,000,000 ns

source: Software Engineering Advice from Building Large-Scale Distributed Systems, Jeff Dean
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Data structures for distributed reasoning

Semantic Web is not Big Data
I RAM faster than disk
I HDFS was conceived for PetaBytes processing
I Does large datasets fit in RAM ?

I Billion Triples Challenge 2012 Dataset : 1.4 Billion triples
I 3 long per triples : 192 bits
I 1.4 Billion triples fits in 33GB of RAM
I After inference : 27 Billion triples
I Fits in 1TB (cost ≤ 10,000$)
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Data structures for distributed reasoning
I We need efficient distributed structures with :

I Concurrent structures
I Indexed structures for fast retrieving
I In memory storage for faster access

I With support for :
I Network exchange
I Shared data
I Minimum disk access (loading only)

As of today
I TripleStore object shared by threads

I Concurrent
I Indexed
I Immutable triples

I Every running rule can access it
I Direct access limits duplicates
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Fragment agnostic

I Custom fragment or rule set
I The user can also define new

custom rules
I Individual rules optimisations
I Proposes fragment optimisations

As of today
I Any rule is a distinct class
I Dynamic schedule
I Can easily add new rules

Rank of most used concepts usable in inference, with fragments
highlighting (data from [4])
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Smart adaptive scheduling

I Automatically schedules the rules
thanks to the dependence rules
graph

I The schedule depends on the
fragment and so on the set of rules

I Just-in-time scheduling

As of today
I Schedules the rules at the

beginning
I Only take into account the

specified rules
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Multithreaded version

I Before implement distributed version, we start by a
Multithreaded one, and then upgrade to distributed
architecture.
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Outline evolution

First reasoner outline

TRIPLE
DISTRIBUTOR

Buffers Switchers

R1

R2

R3

Rn

THREAD POOL
R1 R3 R2 R2 R1 R3 R1 R2

Rule
Thread
Creator

SHARED IN-MEMORY
SHARED TRIPLE STORE BLOOM FILTER

FILTER FOR
USABLE
TRIPLES
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Outline evolution

Rule streamed evolution

Buffer Distributor

Run

Executor Service

S
u
b

sc
ri

b
e
rs
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Outline evolution

Actual reasoner outline

Local
DataBase

Web Data

Data Stream

1

2

34

5
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What’s new

I There is not one node dedicated to one task
I New thread pre allocated, dormant
I Automatic rules scheduling
I Shared data in memory
I Streaming process
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Publications

ESWC 2013
Accepted paper A Linked Data Reasoner in the Cloud [2]
Poster presentation at the PhD Symposium

RR 2013
Summer School participation
Poster presentation at the PhD Symposium
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Schedule

I End of 2013 - First streamed version
- WebPie deployment and tests - Our baseline

I February 2014 - Proposal of our Cloud-hosted linked data reasoner
- Extended analysis of 1st version vs baseline

I May 2014 - First implementation with smart scheduling
- Extended analysis of smart version vs 1st version

I November 2014 - Reasoner open-sourced with documentation
- Tests launched for 3 addressed problems

I January 2015 - Additional features :
- Help the user choosing a fragment
- Propose fragment optimisations
- Make predictions about the inference (time and space)
- Make optimisation on the reasoner itself

I April 2015 - Writing the PhD thesis
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