SLIDER: AN EFFICIENT INCREMENTAL REASONER

Jules Chevalier jules.chevalier@univ-st-etienne.fr

Laboratoire Hubert Curien, Télécom Saint Etienne, Université Jean Monnet

March 2015

Supervisors : Fréférique Laforest Christophe Gravier Julien Subercaze

Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

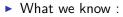
Semantic Web

- Formalises concepts to represent them
- Standardizes this representation
- Makes it readable for both humans and computers
- Links these data together
- Allows automatic operations on these data
 - Integrity constraint validation
 - Query the knowledge base
 - Extraction of implicit data

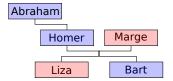
Semantic Web

- Formalises concepts to represent them
- Standardizes this representation
- Makes it readable for both humans and computers
- Links these data together
- Allows automatic operations on these data
 - Integrity constraint validation
 - Query the knowledge base
 - Extraction of implicit data = Reasoning

Reasoning : Forward Chaining VS Backward Chaining

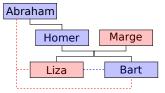


- Abraham father Homer
- Homer father Liza
- Homer father Bart
- Marge mother Liza
- Marge mother bart



Reasoning : Forward Chaining VS Backward Chaining

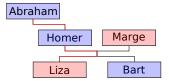
- What we know :
 - Abraham father Homer
 - Homer father Liza
 - Homer father Bart
 - Marge mother Liza
 - Marge mother bart



- What Forward Chaining do :
 - Abraham grandfather Liza
 - Abraham grandfather Bart
 - **۱**...
 - \blacktriangleright Abraham grandfather Liza ? \rightarrow yes

Reasoning : Forward Chaining VS Backward Chaining

- What we know :
 - Abraham father Homer
 - Homer father Liza
 - Homer father Bart
 - Marge mother Liza
 - Marge mother bart



- What Forward Chaining do :
 - Abraham grandfather Liza
 - Abraham grandfather Bart
 - **۰**...
 - Abraham grandfather Liza ? ightarrow yes

What Backward Chaining do :

- Abraham grandfather Liza ?
- Abraham father X & X father Liza ?
- ► Abraham father Homer & Homer father Liza → yes

Rule-based Reasoning

Rules

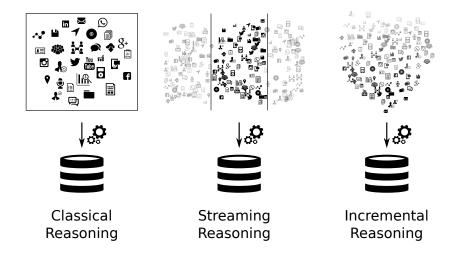
- An antecedent: Allows the rule to be executed
- A *consequent*: The statement inferred

 $\frac{c_1 \text{ subClassOf } c_2, \text{ x type } c_1}{\text{x type } c_2} \text{ (cax-sco)}$

Fragments

- A fragment is a set of inference rules
- Semantic Web standards suggest different pre defined fragments (RDFS, OWL Lite, OWL Full, OWL DL, ...)
- The more they have a high expressivity, the more the operations are complex (from P to NEXPTIME)
- Choosing one fragment is trade off between expressivity and computational complexity

Reasoning kinds



Problematic

What we want to do

Efficient and scalable incremental forward-chaining reasoning

Problematic

What we want to do

Efficient and scalable incremental forward-chaining reasoning

What are the problems

- Rules form a cyclic graph
 - Complexity depends on the fragment !
- ► The amount of triples generated is quite unpredictable
 - The complexity also depends on data !
- Big Data is not static
 - ▶ We need to handle data streams !

Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

Batch reasoning approaches

WebPie : a Web-scale Parallel Inference Engine

- 2009 Jacopo Urbani Thesis [7]
 - Uses MapReduce for OWL Horst and RDFS reasoning
- > 2011 Fix some issues to improve OWL Horst reasoning [8]
 - Duplicates limitation
 - Indexation for sameAs
 - Greedy scheduling
 - Cleaner Job after some rules, or at the end

MapResolve [6]

- Based on WebPie to provide \mathcal{EL} + classification
- ► Use 3 sets for triples : usable, used, inferred
- Limits overheads, optimise
- Points out MapReduce limitations

Analysis : MapReduce approaches

MapReduce Framework

- Allows to implement distributed tasks
- The Hadoop framework
- Best suited to batch process huge amounts of data

- MapReduce requires an acyclic dataflow
- Jobs run in isolation
- Not suitable network shuffling
- Hadoop distributed file system

WebPie and MapResolve Contributions

- Only provide batch reasoning
- Nodes must wait for each other
- Generate a lot of duplicates
- Fragment dependant
- Naive partitioning
- Critical letter for WebPie [5]

Incremental solutions

History Matters: Incremental Ontology Reasoning Using Modules [3]

- Maintains classification of ontologies as they evolve
- Provides encouraging results
- Not viable for static hierarchy of ontologies
- Not adapted on high number of nominals

Incremental Reasoning in OWL EL without Bookkeeping [4]

- Handles both addition and deletion of knowledge
- Incremental classification of TBox
- Limited to the classification on the TBox
- Dedicated to the \mathcal{EL} + fragment

Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

Proposed solution

Slider

Parallel and Scalable Execution

- Rules mapped to independent modules
- Multiple rule instances allowed to run in parallel

Duplicates Limitation

- Shared triple store
- Vertical partitioning [1] and multiple indexing

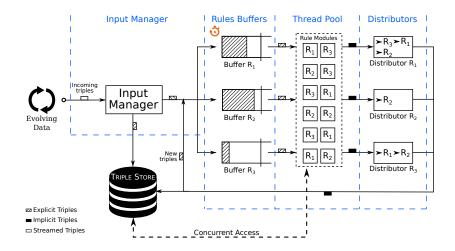
Data Stream Support

- Streamed architecture
- Parallel parsing/reasoning

Fragment's Customization

- Dynamic support of ruleset
- ρ df and RDFS natively supported
- Extendible to any other fragment

Architecture



Architecture

Input Manager

- Receives incoming triples
- Sends them to
 - The triple store
 - The rules buffers

Rules Buffers

- A buffer for each rule
- Run the rule when full
- Run the rule when timed-out
- Ensures completeness

Thread Pool

- Manages a pool instances
- Ensures scalability

Rule instance

- Execute the inference
- Access concurrently the triple store

Distributor

- Stores inferred triples
- Dispatches them to the buffers

Inference: cax-sco

 $\frac{c_1 \text{ subClassOf } c_2, x \text{ type } c_1}{x \text{ type } c_2} (\text{cax-sco})$

Algorithm 1 cax-sco

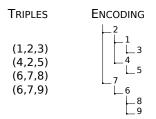
Require: tripleStore, newTriples, outputTriples

```
for all triple1 in TripleStore with predicate subClassOf do
for all triple2 in newTriples with predicate type do
if triple1.subject = triple2.object then
output ← (triple2.subject, type.triple1.object)
outputTriples ← outputTriples ∪ {output}
end if
end for
end for
```

```
for all triple1 in newTriples with predicate subClassOf do
  for all triple1 in TripleStore with predicate type do
    if triple1.subject = triple2.object then
    output ← (triple2.subject,type,triple1.object)
    outputTriples ← outputTriples ∪ {output}
    end if
  end for
  end for
```

Triple Store

Vertical Partitioning



Near-optimal indexing

- Indexing by predicates, subjects and objects
- Best trade-off for nearly all rules from the OWL fragments

Concurrent Access

- ReentrantReadWriteLocks ensure concurrency
- Write lock to add triples
- **Read** lock for other methods

Duplicates Elimination

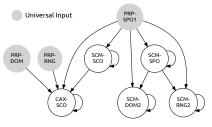
- HashMap of MultiMaps*
- Bans duplicates
- Ensures uniqueness of triples

* Google's Guava libraries

Rules Dependency Graph

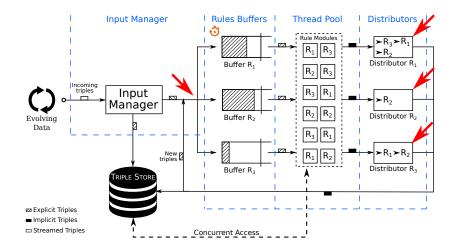
- Directed graph
- Edges represent rules
- $A \rightarrow B$: *B* can use the output of *A*

- Created at initialisation time
- Used to route new triples by
 - The input manager
 - The distributors



Rules Dependency Graph for $\rho \mathrm{df}$

Architecture



Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

Experimentations

Baseline

- OWLIM-SE (Standard Edition)
- Semantic repository with reasoning features
- ► Fastest reasoner available to the best of our knowledge
- Outperforms Jena and Sesame
- Natively supports RDFS, custom rule configuration for ρdf

Dataset

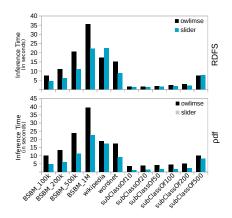
- 13 ontologies from 3 sets:
 - 2 Real life ontologies: WordNet and Wikipedia
 - ▶ 5 generated by BSBM, from 100,000 to 5 million triples
 - 6 subClassOf ontologies (closure computation, duplicates intensive)

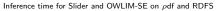
Experiments

	ρ df reasoning		RDFS reasoning	
Ontology	OWLIM	Slider	OWLIM	Slider
BSBM_100k	9.907s	4.636s	7.487s	4.558s
BSBM_200k	13.338s	6.059s	11.064s	6.198s
BSBM_500k	23.595s	11.133s	20.580s	10.984s
BSBM_1M	39.364s	22.357s	35.602s	22.192s
BSBM_5M	170.151s	126.292s	160.699s	127.037s
wikipedia	18.802s	17.422s	17.186s	22.443s
wordnet	-	-	15.075s	8.828s
subClassOf10	3.507s	1.209s	1.423s	1.216s
subClassOf20	3.730s	1.316s	1.536s	1.330s
subClassOf50	4.159s	1.615s	1.865s	1.583s
subClassOf100	4.397s	1.827s	2.242s	1.805s
subClassOf200	4.962s	2.210s	2.837s	2.170s
subClassOf500	9.862s	8.102s	7.584s	7.625s

Improvement

- Average 71.47%
- RDFS 36.08%
- ▶ *p*df **106.86%**





Demonstration



Slider Demonstration

[2] J Chevalier, J Subercaze, C Gravier, F Laforest. Slider: an Incremental EfficientReasoner, SIGMOD 2015

Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

Conclusion and Future Work

Slider

- Efficient incremental rule-based reasoning
- Fragment agnocism
- Data streams support
- Improvement of 71.47% in average against baseline

Future Work

- Timeout and buffer size cutomisable by rule
- Implementation of new rulesets
- Just-in-time optimisation of rules scheduling
- Use of historical statistics for adaptation

Bibliography I

- ABADI, D. J., MARCUS, A., MADDEN, S. R., AND HOLLENBACH, K. Scalable semantic web data management using vertical partitioning. In Proceedings of the 33rd International Conference on Very Large Data Bases (2007), VLDB '07, VLDB Endowment, pp. 411–422.
- [2] CHEVALIER, J., SUBERCAZE, J., GRAVIER, C., AND LAFOREST, F. Slider, an Efficient Incremental Reasoner. SIGMOD (2015).
- [3] CUENCA GRAU, B., HALASCHEK-WIENER, C., AND KAZAKOV, Y. History matters: Incremental ontology reasoning using modules. In *The Semantic Web*. 2007.
- [4] KAZAKOV, Y., AND KLINOV, P. Incremental reasoning in owl el without bookkeeping. In *ISWC 2013*. 2013.
- [5] PATEL-SCHNEIDER, P. Letter: Comments on WebPIE: A Web-scale parallel inference engine using MapReduce. Web Semantics: Science, Services and Agents on ... 15 (Sept. 2012), 69–70.
- [6] SCHLICHT, A., AND STUCKENSCHMIDT, H. Mapresolve. Web Reasoning and Rule Systems 6902 (2011), 294–299.
- [7] URBANI, J. RDFS/OWL reasoning using the MapReduce framework. PhD thesis, Vrije Universiteit - Faculty of Sciences, 2009.
- [8] URBANI, J., KOTOULAS, S., MAASSEN, J., VAN HARMELEN, F., AND BAL, H. E. WebPIE: A Web-scale parallel inference engine using MapReduce. *J. Web Sem.* 10 (2012), 59–75.

SLIDER: AN EFFICIENT INCREMENTAL REASONER

Thank you for your attention

jules.chevalier@univ-st-etienne.fr juleschevalier.github.io/slider demo-satin.telecom-st-etienne.fr/slider