
Slider: an Efficient Incremental Reasoner

Jules Chevalier
jules.chevalier@univ-st-etienne.fr

Laboratoire Hubert Curien, Télécom Saint Etienne, Université Jean Monnet

March 2015

Supervisors :
Fréférique Laforest
Christophe Gravier
Julien Subercaze

mailto:jules.chevalier@univ-st-etienne.fr


Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

2 / 28



Semantic Web

I Formalises concepts to represent them
I Standardizes this representation
I Makes it readable for both humans and computers
I Links these data together
I Allows automatic operations on these data

I Integrity constraint validation
I Query the knowledge base
I Extraction of implicit data

3 / 28



Semantic Web

I Formalises concepts to represent them
I Standardizes this representation
I Makes it readable for both humans and computers
I Links these data together
I Allows automatic operations on these data

I Integrity constraint validation
I Query the knowledge base
I Extraction of implicit data = Reasoning

4 / 28



Reasoning : Forward Chaining VS Backward Chaining

Abraham

Homer Marge

Liza Bart

I What we know :
I Abraham father Homer
I Homer father Liza
I Homer father Bart
I Marge mother Liza
I Marge mother bart

I What Forward Chaining do :
I Abraham grandfather Liza
I Abraham grandfather Bart
I ...
I Abraham grandfather Liza ? → yes

I What Backward Chaining do :
I Abraham grandfather Liza ?
I Abraham father X & X father Liza ?
I Abraham father Homer &

Homer father Liza → yes

5 / 28



Reasoning : Forward Chaining VS Backward Chaining

Abraham

Homer Marge

Liza Bart

I What we know :
I Abraham father Homer
I Homer father Liza
I Homer father Bart
I Marge mother Liza
I Marge mother bart

I What Forward Chaining do :
I Abraham grandfather Liza
I Abraham grandfather Bart
I ...
I Abraham grandfather Liza ? → yes

I What Backward Chaining do :
I Abraham grandfather Liza ?
I Abraham father X & X father Liza ?
I Abraham father Homer &

Homer father Liza → yes

5 / 28



Reasoning : Forward Chaining VS Backward Chaining

Abraham

Homer Marge

Liza Bart

I What we know :
I Abraham father Homer
I Homer father Liza
I Homer father Bart
I Marge mother Liza
I Marge mother bart

I What Forward Chaining do :
I Abraham grandfather Liza
I Abraham grandfather Bart
I ...
I Abraham grandfather Liza ? → yes

I What Backward Chaining do :
I Abraham grandfather Liza ?
I Abraham father X & X father Liza ?
I Abraham father Homer &

Homer father Liza → yes
5 / 28



Rule-based Reasoning
Rules

I An antecedent: Allows the rule to be executed
I A consequent: The statement inferred

c1 subClassOf c2, x type c1 (cax-sco)x type c2

Fragments
I A fragment is a set of inference rules
I Semantic Web standards suggest different pre defined

fragments (RDFS, OWL Lite, OWL Full, OWL DL, ...)
I The more they have a high expressivity, the more the

operations are complex (from P to NEXPTIME)
I Choosing one fragment is trade off between expressivity and

computational complexity
6 / 28



Reasoning kinds

Classical
Reasoning

Streaming
Reasoning

Incremental
Reasoning

7 / 28



Problematic

What we want to do
I Efficient and scalable incremental forward-chaining reasoning

What are the problems
I Rules form a cyclic graph

I Complexity depends on the fragment !
I The amount of triples generated is quite unpredictable

I The complexity also depends on data !
I Big Data is not static

I We need to handle data streams !

8 / 28



Problematic

What we want to do
I Efficient and scalable incremental forward-chaining reasoning

What are the problems
I Rules form a cyclic graph

I Complexity depends on the fragment !
I The amount of triples generated is quite unpredictable

I The complexity also depends on data !
I Big Data is not static

I We need to handle data streams !

8 / 28



Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

9 / 28



Batch reasoning approaches
WebPie : a Web-scale Parallel Inference Engine

I 2009 - Jacopo Urbani Thesis [7]
I Uses MapReduce for OWL Horst and RDFS reasoning

I 2011 - Fix some issues to improve OWL Horst reasoning [8]
I Duplicates limitation
I Indexation for sameAs
I Greedy scheduling
I Cleaner Job after some rules, or at the end

MapResolve [6]

I Based on WebPie to provide EL+ classification
I Use 3 sets for triples : usable, used, inferred
I Limits overheads, optimise
I Points out MapReduce limitations

10 / 28



Analysis : MapReduce approaches

MapReduce
Framework

I Allows to implement distributed
tasks

I The Hadoop framework
I Best suited to batch process huge

amounts of data

I MapReduce requires an acyclic
dataflow

I Jobs run in isolation
I Not suitable network shuffling
I Hadoop distributed file system

WebPie and MapResolve
Contributions

I Only provide batch reasoning
I Nodes must wait for each other
I Generate a lot of duplicates
I Fragment dependant
I Naive partitioning

I Critical letter for WebPie [5]

11 / 28



Incremental solutions
History Matters: Incremental Ontology Reasoning Using
Modules [3]

I Maintains classification of ontologies as they evolve
I Provides encouraging results
I Not viable for static hierarchy of ontologies
I Not adapted on high number of nominals

Incremental Reasoning in OWL EL without Bookkeeping [4]

I Handles both addition and deletion of knowledge
I Incremental classification of TBox
I Limited to the classification on the TBox
I Dedicated to the EL+ fragment

12 / 28



Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

13 / 28



Proposed solution

Slider
I Parallel and Scalable Execution

I Rules mapped to independent modules
I Multiple rule instances allowed to run in parallel

I Duplicates Limitation
I Shared triple store
I Vertical partitioning [1] and multiple indexing

I Data Stream Support
I Streamed architecture
I Parallel parsing/reasoning

I Fragment’s Customization
I Dynamic support of ruleset
I ρdf and RDFS natively supported
I Extendible to any other fragment

14 / 28



Architecture

TRIPLE STORE

Evolving
Data

New
triples

Explicit Triples

Implicit Triples

Streamed Triples

R2

Buffer R3
Distributor R3

Distributor R2

Distributor R1

Buffer R2

Buffer R1

R2R1

R2

R1R3

Input Manager Rules Buffers Thread Pool Distributors

R1

R1

R2

R2

R3

R3

Incoming
triples

Concurrent Access

Rule Modules

Input
Manager

R1

R2

R3

R3

R1

R2

15 / 28



Architecture

Input Manager
I Receives incoming triples
I Sends them to

I The triple store
I The rules buffers

Rules Buffers
I A buffer for each rule
I Run the rule when full
I Run the rule when

timed-out
I Ensures completeness

Thread Pool
I Manages a pool instances
I Ensures scalability

Rule instance
I Execute the inference
I Access concurrently the

triple store

Distributor
I Stores inferred triples
I Dispatches them to the

buffers

16 / 28



Inference: cax-sco

17 / 28



Triple Store

Vertical Partitioning

2
1

3
4

5
7

6
8
9

(1,2,3)
(4,2,5)
(6,7,8)
(6,7,9)

TRIPLES ENCODING

Near-optimal indexing
I Indexing by predicates, subjects

and objects
I Best trade-off for nearly all rules

from the OWL fragments

Concurrent Access
I ReentrantReadWriteLocks

ensure concurrency
I Write lock to add triples
I Read lock for other methods

Duplicates Elimination
I HashMap of MultiMaps∗

I Bans duplicates
I Ensures uniqueness of triples

∗Google’s Guava libraries

18 / 28



Rules Dependency Graph

I Directed graph
I Edges represent rules
I A → B: B can use the output

of A

I Created at initialisation time
I Used to route new triples by

I The input manager
I The distributors

PRP-
DOM

CAX-
SCO

PRP-
RNG

PRP-
SPO1

SCM-
SCO

SCM-
DOM2

SCM-
RNG2

SCM-
SPO

Universal Input

Rules Dependency Graph for ρdf

19 / 28



Architecture

TRIPLE STORE

Evolving
Data

New
triples

Explicit Triples

Implicit Triples

Streamed Triples

R2

Buffer R3
Distributor R3

Distributor R2

Distributor R1

Buffer R2

Buffer R1

R2R1

R2

R1R3

Input Manager Rules Buffers Thread Pool Distributors

R1

R1

R2

R2

R3

R3

Incoming
triples

Concurrent Access

Rule Modules

Input
Manager

R1

R2

R3

R3

R1

R2

20 / 28



Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

21 / 28



Experimentations

Baseline
I OWLIM-SE (Standard Edition)
I Semantic repository with reasoning features
I Fastest reasoner available to the best of our knowledge
I Outperforms Jena and Sesame
I Natively supports RDFS, custom rule configuration for ρdf

Dataset
I 13 ontologies from 3 sets:

I 2 Real life ontologies: WordNet and Wikipedia
I 5 generated by BSBM, from 100,000 to 5 million triples
I 6 subClassOf ontologies (closure computation, duplicates

intensive)

22 / 28



Experiments

ρdf reasoning RDFS reasoning
Ontology OWLIM Slider OWLIM Slider
BSBM_100k 9.907s 4.636s 7.487s 4.558s
BSBM_200k 13.338s 6.059s 11.064s 6.198s
BSBM_500k 23.595s 11.133s 20.580s 10.984s
BSBM_1M 39.364s 22.357s 35.602s 22.192s
BSBM_5M 170.151s 126.292s 160.699s 127.037s
wikipedia 18.802s 17.422s 17.186s 22.443s
wordnet - - 15.075s 8.828s
subClassOf10 3.507s 1.209s 1.423s 1.216s
subClassOf20 3.730s 1.316s 1.536s 1.330s
subClassOf50 4.159s 1.615s 1.865s 1.583s
subClassOf100 4.397s 1.827s 2.242s 1.805s
subClassOf200 4.962s 2.210s 2.837s 2.170s
subClassOf500 9.862s 8.102s 7.584s 7.625s

Improvement
I Average 71.47%
I RDFS 36.08%
I ρdf 106.86%

R
D
F
S

owlimse

slider

5

10

15

20

25

30

35

40

In
fe

re
n
ce

 T
im

e
(i

n
 s

e
co

n
d
s)

ρ
df

5
10
15
20
25
30
35
40
45

BS
BM

_1
00

k

BS
BM

_2
00

k

BS
BM

_5
00

k

BS
BM

_1
M

wik
ip

ed
ia

wor
dn

et

su
bC

la
ss

Of1
0

su
bC

la
ss

Of2
0

su
bC

la
ss

Of5
0

su
bC

la
ss

Of1
00

su
bC

la
ss

Of2
00

su
bC

la
ss

Of5
00

owlimse

slider

In
fe

re
n
ce

 T
im

e
(i

n
 s

e
co

n
d
s)

Inference time for Slider and OWLIM-SE on ρdf and RDFS

23 / 28



Demonstration

[2] J Chevalier, J Subercaze, C Gravier, F Laforest. Slider: an Incremental EfficientReasoner, SIGMOD 2015

24 / 28



Summary

Introduction

State of the art

Contribution

Experimental results

Conclusion

25 / 28



Conclusion and Future Work

Slider
I Efficient incremental rule-based reasoning
I Fragment agnocism
I Data streams support
I Improvement of 71.47% in average against baseline

Future Work
I Timeout and buffer size cutomisable by rule
I Implementation of new rulesets
I Just-in-time optimisation of rules scheduling
I Use of historical statistics for adaptation

26 / 28



Bibliography I
[1] Abadi, D. J., Marcus, A., Madden, S. R., and Hollenbach, K.

Scalable semantic web data management using vertical partitioning.
In Proceedings of the 33rd International Conference on Very Large Data Bases (2007), VLDB ’07, VLDB
Endowment, pp. 411–422.

[2] Chevalier, J., Subercaze, J., Gravier, C., and Laforest, F.
Slider, an Efficient Incremental Reasoner.
SIGMOD (2015).

[3] Cuenca Grau, B., Halaschek-Wiener, C., and Kazakov, Y.
History matters: Incremental ontology reasoning using modules.
In The Semantic Web. 2007.

[4] Kazakov, Y., and Klinov, P.
Incremental reasoning in owl el without bookkeeping.
In ISWC 2013. 2013.

[5] Patel-Schneider, P.
Letter: Comments on WebPIE: A Web-scale parallel inference engine using MapReduce.
Web Semantics: Science, Services and Agents on . . . 15 (Sept. 2012), 69–70.

[6] Schlicht, A., and Stuckenschmidt, H.
Mapresolve.
Web Reasoning and Rule Systems 6902 (2011), 294–299.

[7] Urbani, J.
RDFS/OWL reasoning using the MapReduce framework.
PhD thesis, Vrije Universiteit - Faculty of Sciences, 2009.

[8] Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., and Bal, H. E.
WebPIE: A Web-scale parallel inference engine using MapReduce.
J. Web Sem. 10 (2012), 59–75.

27 / 28



Slider: an Efficient Incremental Reasoner

Thank you for your attention
jules.chevalier@univ-st-etienne.fr

juleschevalier.github.io/slider
demo-satin.telecom-st-etienne.fr/slider

28 / 28

mailto:jules.chevalier@univ-st-etienne.fr
juleschevalier.github.io/slider
demo-satin.telecom-st-etienne.fr/slider

	Introduction
	State of the art
	Contribution
	Experimental results
	Conclusion

